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Fig. 1. Predicting and reducing human mis-estimation of object motion. (a) shows a common animation and gaming scenario where the observer has to estimate
the motion of a soccer ball in a 3D scene. Due to perceptual errors in estimating motion vectors in screen-displayed graphics, we may significantly misestimate
the direction of the soccer ball (estimated leftward yellow vector vs. actual rightward green vector). For an animated example, see the supplementary video. To
mitigate motion estimation inaccuracies and enhance task performance and perceptual fidelity, our perceptual model measures the correlation between
estimation error, and scene dynamics and content. These predicted measures lead to content designs optimized for minimizing perceptual errors in motion
estimation, such as by adjusting scene depth with an added wall (b) or by altering camera angles (c).

Precisely understanding how objects move in 3D is essential for broad
scenarios such as video editing, gaming, driving, and athletics. With screen-
displayed computer graphics content, users only perceive limited cues to
judge the object motion from the on-screen optical flow. Conventionally,
visual perception is studied with stationary settings and singular objects.
However, in practical applications, we—the observer—also move within
complex scenes. Therefore, we must extract object motion from a combined
optical flow displayed on screen, which can often lead to mis-estimations
due to perceptual ambiguities.

We measure and model observers’ perceptual accuracy of object motions
in dynamic 3D environments, a universal but under-investigated scenario in
computer graphics applications. We design and employ a crowdsourcing-
based psychophysical study, quantifying the relationships among patterns of
scene dynamics and content, and the resulting perceptual judgments of object
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motion direction. The acquired psychophysical data underpins a model for
generalized conditions. We then demonstrate the model’s guidance ability to
significantly enhance users’ understanding of task object motion in gaming
and animation design. With applications in measuring and compensating for
object motion errors in video and rendering, we hope the research establishes
a new frontier for understanding and mitigating perceptual errors caused
by the gap between screen-displayed graphics and the physical world.

CCS Concepts: • Computing methodologies → Perception; Motion
processing.
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optical flow, camera control
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1 INTRODUCTION
When driving on the road, we must accurately estimate and respond
to themotion of various objects in a dynamic environment, including
other vehicles and pedestrians. How users perceive object motion
is also a universal metric in computer graphics applications, such
as guiding camera trajectories in video playback [Kang and Cho
2019], controlling game difficulties [Caroux et al. 2013], compressing
videos [Furht et al. 2012], and reducing simulator sickness [Hu et al.
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2019; Park et al. 2022]. In these real-world scenarios, both the objects
and we ourselves may move within dynamic 3D environments. In
such situations, extracting scene-relative object motion solely from
the mixed and anisotropic optical flow on the screen can lead to
misinterpretations due to its ambiguous nature [Dokka et al. 2019].
Therefore, we ask, “How accurately can we perceive moving objects
in scenes featuring different motion dynamics?”.
Prior studies have observed that perceptual errors can occur

when estimating object movements during self-movements [Dokka
et al. 2019; Xing and Saunders 2022] and in 3D scenes [Cornilleau-
Pérès and Gielen 1996; Van den Berg and Brenner 1994a]. These
errors are attributed to how humans exhibit inherent cognitive
biases that mislead our motion estimates when crucial perceptual
cues are absent (e.g., vestibular cues obtained from whole-body
movement) [Xie et al. 2020]. However, to provide design guidance
in downstream graphics applications, a quantified understanding of
the variability of these errors across different scene dynamics is still
missing. Filling this knowledge gap poses a remarkable challenge
due to the need of sampling a diverse range of conditions, conducting
repeated experiments, and involving a wide population to account
for variations in individuals’ sensory and perceptual variances [Xing
and Saunders 2022].
In this paper, we measure and analyze the errors in our visual

perception of screen-displayed object motion, particularly in rela-
tion to concurrent global scene movements which result in dynamic
environments. To this aim, we present a series of large-scale psy-
chophysical studies comprising over 10,000 trials, which correlate
object motion perception and scene dynamics characterized by scene
movements and content depths. We employ and validate a crowd-
sourcing approach to tackle the unique challenges posed by the
need for large sample sizes in both population and trial repetitions.
Additionally, we also showcase how the model can guide ani-

mation and game design to reduce perceived errors in object mo-
tion by viewers. We hope the research will contribute to a new
frontier in the computer graphics community, focusing on under-
standing the visual performance limitations introduced by displays
and exploring design strategies to compensate for them. Refer to
www.github.com/NYU-ICL/motion-estimation for the anonymized
data and model implementations.

Limitation overview. We present this research to raise awareness
of how designs of scene content and dynamics can affect human
perceptual accuracy of motion in common computer graphics con-
texts. However, we do not propose automated algorithms that would
directly apply these discoveries to optimize user performance.

2 RELATED WORK & TERMINOLOGY

2.1 Image-Space Motion Description and Estimation
Optical flow is often used to depict the spatio-temporal motion of
video [Huang et al. 1995; Neumann 1984]. It can be estimated by
forward analysis [Beauchemin and Barron 1995; Xu et al. 2011] or
learning-based approaches [Hu et al. 2018; Hui et al. 2018]. Typically,
global scene motions caused by camera movements induce global
optical flows, while isolated object motions result in more localized
patterns. Therefore, optical flows are instrumental for detecting
object motion in images and 3D space [Talukder and Matthies 2004].

As visualized in Figure 2a, optical flow patterns of rigid transla-
tional movements exhibit a stationary on-screen point, known as
the Focus of Expansion (FOE), from which flow vectors diverge [Jain
1983]. The locations of these FOEs serve as visual cues that humans
use to infer the direction of object and scene motions [Jain 1984;
Warren Jr and Hannon 1988]. Thus, prior works have examined the
relationship between the dynamics of the FOE, which capture the
observer-relative scene motions in 3D space, and human perception
of motion [Jain 1984; Lappe et al. 1999; Warren Jr and Hannon 1988].

2.2 Human Perception of Scene and Object Motion
In most computer graphics scenarios, users often have to remain
physically stationary. To create the sensation of dynamics such as
self- (a.k.a., vection [Howard and Howard 1994; Hu et al. 2019])
or scene content movements, we typically synthesize illusions of
motion via graphics rendering, resulting in a complex and rich visual
percept [Lappe et al. 1999; Nishida et al. 2018]. Examples include
playing a racing car video game or watching a roller coaster video.
Therefore, when observing moving objects on a computer screen,
our primary source of motion cues is the displayed optical flow.
Unlike physical scenarios, such on-screen visual stimuli often

lack crucial information that assists us in accurately estimating 3D
motion, including vestibular cues [DeAngelis and Angelaki 2012]
as well as depth cues via stereopsis [Didyk et al. 2011] and accom-
modation [Murray 1994]. Specifically, Xie et al. [2020] demonstrate
that the accuracy of human motion perception relies on the combi-
nation of multiple cues, indicating that we are most adept at motion
estimation in real-life. Consequently, recent studies observed hu-
man errors in extracting object motion from its surrounding 3D
environment under dynamic camera movements [Dokka et al. 2019;
Layton and Fajen 2016; Li et al. 2018; Xie et al. 2020; Xing and Saun-
ders 2022]. Several hypotheses have been presented to explain the
underlying neurological mechanism for cognitively decomposing
the two motions [Beck et al. 2011; Kim et al. 2022; Sasaki et al. 2017].
Although existing research has identified some of the neurological
mechanisms, we aim to address the knowledge gap in quantifying
the accuracy and precision of human imperfections in extracting
object motion. Additionally, we provide functional guidance for
content design in downstream graphics applications to enhance
task performance. To achieve this, we benchmark and model human
object motion estimation based on the movement velocities of the
scene and target object, and the depth disparity between them.

2.3 Visual-Acuity-Aware Computer Graphics
Human visual acuity is imperfect, and is affected by various sources
of environmental, cognitive, and physiological noise [Deering 1998;
Van Beers 2007]. Examples of limitations include reduced resolution
in peripheral vision [Watson 2014], diminished color perception [Co-
hen et al. 2020], and flicker imperception [Tyler 1987]. Researchers
have capitalized on these limitations to optimize applications for
fast [Kaplanyan et al. 2019; Krajancich et al. 2021], power-efficient
[Duinkharjav et al. 2022], and higher-quality [Montalto et al. 2015;
Park et al. 2023] imagery, as well as automatically generated visual
illusions [Freeman et al. 1991]. Additionally, these perceptual limita-
tions have been exploited to enable optimized shading rates [Denes
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Fig. 2. Illustration and analysis of biased perception during self-motion. (a) Accurate reconstruction of the scene-relative target motion ®𝑤𝑡 , requires observers to
subtract their percept of scene motion ®𝑣𝑠 , from the observed on-screen target motion ®𝑣𝑡 . The divergence point of optical flow fields due to scene and target
motions, a.k.a., FOE, denoted as circles at the horizon. (b) Unbiased “perfect” observers can perfectly estimate the scene heading, 𝜑𝑠 , to determine the direction
of scene-relative target motion. Observer L(eft)/R(right) responses are annotated inside the FOE circle for each target motion condition. Biased human
observers make judgment errors due to mis-estimation of the scene heading, 𝜑 ′

𝑠 ≤ 𝜑𝑠 . Biased estimations denoted as dashed arrows. (c) The psychometric
curve visualizes the probability of observers L/R responses for various target motion conditions. The curve indicates that when the target moves through the
scene at a speed of 0.15 m/s to the right (equivalent to an observed target heading of 𝜑𝑡 = 6.2◦) observers believe the object to not be moving sideways, on
average. Data used for curve fitting is shown as a scatter plot (with SEM error bars).

et al. 2020; Jindal et al. 2021]. However, while most existing methods
focus on enhancing system performance within acceptable percep-
tual thresholds, our work aims to compensate for these perceptual
errors to ensure safer and more accurate user task performance.

3 STUDYING OBJECT MOTION PERCEPTION
In a dynamic scenario, a target object moves in the scene ( ®𝑤𝑡 ),
which simultaneously appears to be moving to the observer who
is also in motion (®𝑣𝑠 ), as visualized in Figure 2a. Figure 2b (top)
illustrates that an unbiased “perfect” observer can accurately un-
derstand ®𝑤𝑡 and ®𝑣𝑠 by analyzing their vector combination, ®𝑣𝑡 , as
it appears on-screen. Refer to Figure 3 for a reference to all target
and scene motion-related symbols used throughout the manuscript.
However, this ideal scenario may not reflect reality. As depicted in
Figure 2b (bottom), we are imperfect in estimating either motion
due to the decomposition ambiguity [Xie et al. 2020; Xing and Saun-
ders 2022]. First, depending on scene dynamics, our perception of
scene and target heading often exhibits a “central bias”, meaning an
under-estimation [Xie et al. 2020; Xing and Saunders 2022]. Second,
when observers lack visual cues to determine the target distance,
the ambiguous optical flow further exacerbates the mis-estimation
[Van den Berg and Brenner 1994a]. For example, in Figure 2a, it is
ambiguous whether the ball is large and moving at a farther depth
or small and moving at a closer depth. Therefore, we study (Sec-
tion 3.1), quantify, and model (Section 3.2) the perceptual bias scale
of target motions under various scene dynamics and content.

3.1 Psychophysical Study
Participants. We recruited subjects for the study through the

crowdsourcing platform Prolific. A strict screening protocol was

Prime symbol denotes perceived quantitySymbol denotes type of quantity

3D
Velocity

Camera-Space
(On-screen)

World-Space
(Screen-relative)

Heading
Angle

Subscript denotes subject of quantity

(ground truth without)

(“t” for target, “s” for scene)

Estimated Camera-Space Velocity
of the Target Object

Fig. 3. Motion-related variable notation used throughout Sections 3 and 5
and Figs. 2 and 8.

enforced to mitigate potential confounds arising from task misin-
terpretation and attention lapses, ensuring high-quality data (see
Filtering). As such, we consider the data from 𝑛 = 38 subjects (ages
20 − 56, 21 male) screened from an initial pool of 78. All study pro-
tocols were approved by an institutional review board (IRB), and
subjects were compensated at a rate of $15/ℎ. Refer to the supple-
mentary video for animated visualizations of all study procedures.

Stimuli and procedure. The study was conducted via a web-based
application on a computer screen. A screen calibration procedure
ensured that all subjects viewed the stimuli at approximately 50◦
Field of View (FOV). After calibration, they received a text-based
introduction to the stimuli and task.
Subjects initiated each trial by pressing a button. As shown in

Figure 4a, they were presented a fixation cross at the screen center
for .5 s at the beginning of each trial and instructed to maintain their
gaze stationary. After the cross disappeared, a 2 s video (recorded at
60 fps) was shown. Initially, a flat ground surface with Perlin noise
texture is visible, conveying forward scene motion with variable
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Fig. 4. Study protocols. (a) In the psychophysical study, a fixation cross is displayed for .5 s at the beginning of each trial. Subsequently, a video plays depicting
a scene moving towards the observer at a non-zero heading angle (arrow in (b)). After 1 s, a moving yellow probe (green arrow) is added to the screen. Once
the 2 s video finishes, the subject is asked whether the probe was moving left or right. The probe does not have a forward velocity (top of (b)). (c) In the
application study, the protocol is near-identical, with three differences. The target object is added at the start of the trial, it has forward velocity (bottom of
(b)), and the subject is asked to choose one of seven options to indicate the direction of the object’s motion.

speed, 𝑣𝑠 , and heading direction,𝜑𝑠 , to an observer at variable height
ℎ𝑠 . The ground texture was chosen to avoid tuning to specific spatial
frequency ranges, and instead incorporate a broad spectrum of
frequencies, similar to [Xing and Saunders 2022]. After 1 s, a yellow
probe (target object) was introduced at a height, ℎ𝑡 , positioned 6 m
in front of the observer at 5◦ eccentricity below fixation (ℎ𝑠 − ℎ𝑡 =
.52 m). The target object then moved either left or right relative to
the scene at various speeds, 𝑤𝑡 , for the rest of the clip (1 s). The
object remained visible throughout all trials.
At the end of the video, subjects were prompted to indicate, via

button press, whether the probe was moving left or right relative
to the scene. If they didn’t respond after 10 s, the trial expired and
prompted a screening trial before retrying. No feedbackwas provided
during trials to prevent learning effects.

Prior to the study, subjects participated in an interactive training
session to familiarize themselves with the task and interfaces. The
session comprised eight unique trials of the same protocol. During
training, subjects were provided with feedback on their performance
after each trial and shown a top-down visualization (see Figure 4b).
Subjects were required to respond correctly to all training trials
before being allowed to progress. Training conditions were selected
to prevent external bias (see Conditions).

Metrics. The procedural goal of the study was to determine the
threshold heading of the target object, 𝜇, at which subjects perceive
the target’s scene-relative velocity to be zero: ®𝑤 ′

𝑡 = 0 (a.k.a., bias and
inaccuracy). During each trial, the subject is presented with targets
of different velocities, ®𝑤𝑡 , which appear on-screen to be moving
along

®𝑣𝑡 = ®𝑤𝑡 + ®𝑣𝑠 , (1)

as illustrated in Figure 2a. By aggregating subject responses for
different target velocities, ®𝑤𝑡 , each corresponding to a different

target heading direction, 𝜑𝑡 (see Figure 2b), we fit a psychometric
curve, 𝑓 (see Figure 2c). This allows us to determine the threshold
target heading, 𝜑𝑡 = 𝜇, at which observers perceive that the target
is neither moving left nor right [Wichmann and Hill 2001]:

𝑓 (𝜑𝑡 ; 𝜇, 𝜎, 𝜆) = 𝜆 + (1 − 2𝜆) × 0.5
[
1 + erf

(
(𝜑𝑡 − 𝜇) /

√︁
2𝜎2

)]
. (2)

Here, 𝜎 denotes the slope, and indicates how consistent (or precise)
an observer’s bias measurement is trial-to-trial, 𝜑𝑡 , and 𝜆 denotes
the guess/lapse-rate of subjects (i.e., how often subjects make errors
irrespective of their observed stimulus). To determine the threshold,
𝜇, and slope, 𝜎 , of this psychometric curve, in our study we sampled
11 target heading, 𝜑𝑡 , stimulus levels uniformly sampled between
[−𝜑𝑠 , +3𝜑𝑠 ].

Conditions. Beyond determining the psychometric parameters of
a single condition, we aim to investigate how these parameters vary
with scene motion, and depth. To this aim, we anchor our measure-
ments to a reference condition, where {𝑣𝑠 = 1 m/s, 𝜑𝑠 = 15◦, ℎ𝑠 =

1.75 m}, and explore test conditions where only one attribute of the
reference changes. These test conditions vary in scene dynamics
in speed, 𝑣𝑠 ∈ {0.5 m/s, 3 m/s} and heading, 𝜑𝑠 ∈ {5◦, 25◦}, as well
as scene content in height, ℎ𝑠 ∈ {.55 m, .74 m, 5.22 m}, resulting
in a total of 8 study conditions. Note that we vary the observer
height ℎ𝑠 to examine the corresponding scene’s depth disparity to
the target. To provide a more intuitive representation of depth dis-
parity, we henceforth express these conditions via a dimensionless
target-scene depth disparity coefficient: 𝑑 = ℎ𝑡/ℎ𝑠 ∈ {.05, .3, .9} for
each scene height condition, and 𝑑 = .7 for the reference.

Lastly, in the training session, to avoid introducing external bias
to subjects’ judgment, the trials were deliberately designed as (1) sig-
nificantly different from trials in the study, and (2) sufficiently easy
for classification, yet difficult enough to mitigate potential misinter-
pretation of the task. So, we selected four trials with 𝜑𝑠 = 40◦, and
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Fig. 5. Psychophysical Study Results. Psychometric curves along (a) scene speed, (b) scene heading, and (c) target-scene depth ratio are fitted from the study
data, and interpolated via polynomial regression. Yellow colors indicate majority left responses in the left/right study protocol described in Section 3.1. Each
curve’s threshold is denoted as a scatter with error-bars indicating the Just Noticeable Difference (JND) offset, or stimulus levels at 25/75% response probability.
Contour lines represent JND step-sizes. “Perfect” unbiased observer’s thresholds, as depicted in Figure 2b, are visualized as comparison via dotted black lines.
Refer to supplementary video for user study conditions which correspond to various points across the heatmaps.

𝜑𝑡 ∈ {±30◦,±40◦}. The trial with 𝜑𝑠 = 40◦ and 𝜑𝑡 = 30◦ satisfied
the requirement (2) above and thus was reused as a screening trial to
identify subjects who misinterpreted the task even after the training.
The screening trial was repeated 24 times throughout the study, Each
trial was mirrored to ensure left/right balance, resulting in a total of
(11 × 8 + 24) × 2 = 224 main trials (median completion in 21 min).

Filtering. To ensure high-quality data from crowd subjects, we em-
ployed a two-layer statistical screening. First, we screened inatten-
tive subjects who only made random guesses. An informal pre-pilot
study suggested that subjects almost always gave correct responses
when 𝜑𝑡 = 3𝜑𝑠 as these were easy-to-answer trials. We leveraged
this observation and required an accuracy of ≥ 90%, or a guess rate
of 𝜆 < 10%, to pass this screen (random guess accuracy is 50%).
Second, we screened for subjects who misinterpreted the task and
indicated object motion directions relative to the observer. To this
end, we required an accuracy of ≥ 50% on screening trials (where
observer-relative accuracy is 0%). Refer to Supplement A for study
results reported without screening trial-based filtering.

Results. From the initial 78 subjects, we removed 4 (5%) from the
attentiveness screen and 36 (46%) from task understanding screen,
within a normal range for such crowdsourcing studies [Brühlmann
et al. 2020]. In total, 6, 688 trial results were used for further anal-
ysis. Prior to combining the left and right heading conditions, we
conducted a one-way Analysis of Variance (ANOVA) which showed
that the direction of heading did not have a significant effect on the
subject-aggregated responses (𝐹1,174 = .1, 𝑝 = .75).
As described in Metrics, we statistically summarized study re-

sponses by fitting psychometric curves, extracting the low-dimen-
sional parameters of the threshold, 𝜇, and slope,𝜎 , for each condition
separately (with a fixed 𝜆 = 1.6% across all conditions found via the
attentiveness screen guess rate). Curve parameters for each series
of conditions that varied along a single attribute were interpolated

via polynomial regression (quadratic for 𝜇, and linear for 𝜎). The
results are visualized in Figure 5. See Supplement B for individual
curve parameters and polynomial term coefficients.

Discussion. The statistical analysis demonstrates that we can
safely aggregate heading directions in a left-right agnostic manner.
The central bias persists across all studied conditions, as evidenced
by the measured thresholds below the “unbiased judgment” line in
Figure 5. This suggests that objects moving to the right at a heading
angle between the 50% threshold and the unbiased judgment line
will be perceived as moving to the left by most observers.

We observe other notable trends from the visualization. From
Figure 5a, we observe a steady increase in both bias and consistency.
That is, at higher scene speeds, judgments across subjects become
more consistent, yet inaccurate. From Figure 5b, the threshold
for the scene heading model intersects at zero degrees, indicating
that for forward headings, our perception of lateral motion direc-
tions becomes accurate due to the lack of asymmetric optical flow
cues. Comparing the unbiased judgment line with the threshold fit
suggests that the scale of motion estimation bias is roughly propor-
tional to the scene heading, 𝜑𝑠 . From Figure 5c, our perceptual
errors increase with the depth disparity between the target and the
surrounding scene (i.e., ↑ 𝑑). Intuitively, this reveals that if the scene
content is too far (e.g.,, the sky), it no longer appears to move nor
offer cues to target motion. Conversely, if the scene overlaps with
the target (i.e., 𝑑 → 0), we still observe a significant bias.

Our 2D-monitor-based study results notably reveal stronger bias
compared to prior literature with similar stimuli but in VR (12◦
when 𝜑𝑠 = 15◦ [Xie et al. 2020; Xing and Saunders 2022]). This
aligns with previous findings of stereo cues on motion perception
[Burlingham and Heeger 2020; Van den Berg and Brenner 1994a,b].
The stronger bias observed in 2D displays underscores the crucial
need to thoroughly measure, predict, and compensate for human
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Fig. 6. Full model parameters. The combined model parameters are visualized as 2D surface slices at two different scene speeds, 𝑣HIGH𝑠 = 3 m/s and
𝑣LOW𝑠 = 0.5 m/s. The threshold, 𝜇 indicates the critical heading of observed targets, 𝜑𝑡 , at which observers, on average indicate that the target is moving
neither left nor right toward the observer. The slope, 𝜎 indicates the confusability between different target headings (i.e., higher 𝜎 indicates that the ability to
discriminate two target headings are poorer). As reported in Section 3.1, increasing the scene movement speed increases the perceptual bias (meaning lower
threshold) for observers, while decreasing the confusability between targets moving along different heading directions.

errors in the prevailing computer graphics medium today. This also
motivates the future development of 3D displays. In the following
section, we utilize our study data to establish a perceptual model
predicting human errors in target and scene heading judgment.

3.2 Modeling Target Motion Errors
Model Extrapolation. In Section 3.1, we conducted three separate

polynomial fits to distinct subsets of the study data, each sharing
only the reference condition of {𝑣𝑠 = 1 m/s, 𝜑𝑠 = 15◦, 𝑑 = .7}. By
factoring out the parameters of the reference from the fitted models,
we express each model as 𝜇 (𝑣𝑠 ) = 𝜇𝑟𝑘𝑣 (𝑣𝑠 ), 𝜇 (𝜑𝑠 ) = 𝜇𝑟𝑘𝜑 (𝜑𝑠 ), and,
𝜇 (𝑑) = 𝜇𝑟𝑘𝑑 (𝑑), where 𝜇𝑟 represents the psychometric threshold of
the reference; 𝑘𝑣/𝜑/𝑑 denote the three individually fitted polynomial
models with 𝜇𝑟 factored out. That is, these models show how the
threshold changes due to a change in condition from the reference,
meaning, 𝑘𝑣 (𝑣𝑠 = 1 m/s) = 𝑘𝜑 (𝜑𝑠 = 15◦) = 𝑘𝑑 (𝑑 = 0.7) = 1.
To integrate these individual models into a unified holistic one,
we employ a first-order approximation and assume the absence of
cross-condition effects. Then, we express the overarching model as:

𝜇 (𝑣𝑠 , 𝜑𝑠 , 𝑑) = 𝜇𝑟𝑘𝑣 (𝑣𝑠 )𝑘𝜑 (𝜑𝑠 )𝑘𝑑 (𝑑). (3)
This formulation ensures that the trends of each model are extended
across a broader spectrum of conditions without compromising the
predictive accuracy of the existing conditions. We acknowledge that
closer analysis of cross-condition effects could reveal more intricate
trends in motion perception errors and is an interesting direction
of study, but in the scope of this work, we aimed to determine only
the first-order effect, and explore the interesting applications that
such a model can enable.

In Figure 6, we present a visualization of the predicted psychomet-
ric parameters of the combined model. The extended model features
combinations of prominent features discussed in Section 3.1 such as
the decrease in estimation errors as the target-scene depth disparity,
𝑑 , decreases, and the proportional errors with heading direction, 𝜑𝑠 .

Predicting Scene-Relative Target Heading. Thus far, our psycho-
physical study, and analysis have concentrated onmeasuringmotion
judgment errors under the simple conditionwhere the scene-relative
target’s motion, ®𝑤𝑡 , was constrained along a single axis leftward or
rightward (illustrated by dashed yellow vectors in Figure 2). But how
do these results generalize to conditions where target objects can
move in various directions? In order for our model to be applicable
for any practical scenarios, it is imperative to establish a framework
for extending our perceptual model to accommodate target motions
beyond simple lateral movements.
As shown in Figure 2b and supported by the relation in Equa-

tion (1), the poor estimation of the two motions—the scene motion
(®𝑣𝑠 ) and scene-relative target motion ( ®𝑤𝑡 )—are dependent on each
other. This relationship is expressed as ®𝑤𝑡 = ®𝑣𝑡 − ®𝑣𝑠 , where ®𝑣𝑡 rep-
resents the target’s observer-relative velocity. Hence, an observer’s
misjudgment of scene-relative target movement corresponds to an
opposite misjudgment of scene movement:

®𝑤 ′
𝑡 = ®𝑣𝑡 − ®𝑣 ′𝑠 . (4)

In our study, the psychophysical thresholds indicate the critical
value ®𝑣𝑡 , with a corresponding heading of 𝜑𝑡 = 𝜇 (𝑣𝑠 , 𝜑𝑠 , 𝑑), at which
®𝑤 ′
𝑡 = 0. By incorporating these results into Equation (4), we conclude

that our model yields the perceived heading of scene motion, which
our study has shown to deviate from the actual heading:

𝜑 ′𝑠 = 𝜇 (𝑣𝑠 , 𝜑𝑠 , 𝑑) . (5)

Ultimately, by combining Equations (4) and (5), we derive an
expression for estimating the perceived scene-relative target motion:

®𝑤 ′
𝑡 = ®𝑣𝑡 − ®𝑣 ′𝑠 = ( ®𝑤𝑡 + ®𝑣𝑠 ) − ®𝑣 ′𝑠 = ®𝑤𝑡 + ®𝑣𝑠 − (𝑅𝜇𝑧)𝑣𝑠 (6)

where𝑅𝜇𝑧 represents the forward unit vector (see Figure 2a) laterally
rotated by 𝜇 (𝑣𝑠 , 𝜑𝑠 , 𝑑). We visualize this vector sum in Figure 8a.
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Fig. 7. Application case study protocols and scenes. (a)/(d) shows the original animations of the target and camera simultaneously moving in a 3D scene. Both
the model prediction and our study results indicate that the animation design induces significant perceptual errors in users’ perceptual error of target motion.
To reduce such errors, our model enables predictive suggestions for design optimizations, such as adjusting camera poses (b), as well as adding static (c)/(e)
and dynamic (f) background geometries.

4 MODEL VALIDATION

4.1 Measuring Model Robustness
To ensure model robustness, we conduct a numerical validation by
fitting the model to half of the experimental data, and measure its
goodness-of-fit to the other half of the data unseen by the fitted
model. Specifically, each of the 𝑛 = 38 subjects’ data is randomly
partitioned into either a model fitting or evaluation group. We then
assess the model’s prediction accuracy compared to the observed
data using the 𝑅2 coefficient for each study condition. Due to the
arbitrary nature of the subject partitioning operation, we repeated
this procedure 𝑁 = 20 times, and observed that the lowest score
recorded was .61, while the mean score across all conditions and
repeats to be .95, compared to the full model’s self-fitting score of
.98, indicating acceptable fits [Ozili 2023].

4.2 Generalizability Over Population
We validate whether the psychometric curves fitted from the sample
population in Section 3.1 can generalize to unseen subjects. To this
aim, we conducted a smaller-scale user study featuring only the
reference condition from our main study in Section 3.1 on a new
subject group (𝑛 = 23, ages 22 − 52, 11 males). This study replicated
the study protocol, stimuli, and crowdsourcing-based recruitment
methods of Section 3.1.

Conditions. Our goal in this study was to investigate the vari-
ability of motion judgment errors across different subjects and to
use the results to validate our main study in Section 3.1. To keep
the study duration and cost feasible, we only studied the reference
condition from the main study (i.e., {𝑣𝑠 = 1 m/s, 𝜑𝑠 = 15◦, 𝑑 = .7})
and increased the number of repetitions for each trial (10 repeats)
to sufficiently fit corresponding psychometric curves for individual
subjects. Step sizes between target heading levels,𝜑𝑡 , were decreased
to 4.2◦ to ensure higher precision measurements. Overall, the study

consisted of 80 measurement trials, 20 filler trials featuring random
conditions to prevent categorical judgments [Xing and Saunders
2022], and 48 screening trials (see Section 3.1 for details) for a total
of 148 trials completed in 15 min by the median subject.

Results and discussion. We fit individual psychometric curves to
each of the subjects’ aggregated study responses, and observed a
mean threshold, 𝜇avg = 4.6◦ ± 1.1◦ Standard Error Mean (SEM) and
mean slope, 𝜎avg = 6.2◦ ± 1.4◦ SEM for the condition identical to
the reference of our main study. A single sample 𝑡-test indicates
that the mean threshold and slope from the main study 𝜇 = 6.2◦
and 𝜎 = 5.7◦ is not significantly different from the distribution of
thresholds and slopes in the evaluation study, 𝑡 (22) = −1.4, 𝑝 = .18
and 𝑡 (22) = .35, 𝑝 = .73, respectively.

The statistical analysis demonstrates that the psychometric thresh-
old found for the reference condition in our main study lies within
acceptable limits of thresholds of out-of-population individuals.
While the approach for establishing representative psychometric
curve parameters utilized in this evaluation study are more robust
due to the larger volume of samples we collect per-subject, we note
that conducting a main study of similar scale in terms of different
conditions studied becomes unfeasible in practice due to prohibi-
tively high study durations and costs.

5 APPLICATION CASE STUDY: ANIMATION DESIGN
GUIDANCE

Scene dynamics, including camera and object motion control [Hsu
et al. 2013], as well as scene content, such as depth [Kellnhofer et al.
2013], are crucial factors in animation design [Jiang et al. 2021; Lino
and Christie 2015], video editing [Kang and Cho 2019], and game
development [Caroux et al. 2013]. Traditionally, the design of these
factors has been implicitly driven by aesthetics or storytelling.

We investigate observers’ perceptual errors in the target dynamics
with two 3D animations. Subsequently, we propose model-guided
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Fig. 8. Predicting and compensating target motion estimation in animation de-
sign. (a) Similar to the illustration in Figure 2a, an observer may erroneously
perceive the target motion ®𝑤𝑡 as ®𝑤′

𝑡 by judging from ®𝑣𝑡 on screen. As shown
in Figure 7, we leverage our model to alter the scene designs in various ways
to reduce the error. (b) We take the “Dynamic Scene” condition in FLIGHT
(Figure 7f) as example. The model-guided cloud motion alters observers’
perception so that ®𝑤′

𝑡 becomes closer to ®𝑤𝑡 (as evidenced in Figure 9).

design alterations, including optimizing camera pose, adjusting
the placement of scene objects, and introducing subtle motions to
them, to mitigate the predicted perceptual errors. We evaluate the
effectiveness of these scene design improvements by conducting
multiple-choice user studies.

Participants and procedure. We conducted two user studies via
crowdsourcing and recruited 𝑛 = 22 subjects (ages 20 − 64, 10 male)
for each. Unlike the two-alternative forced choice (left vs. right judg-
ment) tasks in Section 3.1, subjects in this study directly indicated
perceived scene-relative directions of targetmotion. As shown in Fig-
ures 4c and 8, they chose from one of seven options, each represent-
ing a scene-relative target heading of 𝜓𝑡 ∈ {±30◦,±20◦,±10◦, 0◦}.
After viewing a 2 s video featuring a moving target within a moving
scene, subjects referred a top-down view presented at the end of
each trial and pressed a button to indicate their choice.

Stimuli. Two realistic scenes, along with corresponding target
objects, were used to simulate common gaming and simulation
animations: (1) sports gaming with golf (SPORTS), and (2) flight
simulation (FLIGHT), as shown in Figure 7. In both scenes, as
depicted in Figure 4b, the scene moves towards the observer at
a heading of 𝜑𝑠 = 25◦ with a speed of 𝑣𝑠 = 1 m/s and .5 m/s for
SPORTS and FLIGHT, respectively (the scene and target sizes were
re-scaled to align with the scaling of our model).
Each scene features a target object: a golf ball, and a hot-air

balloon. At the start of each trial, the target object appears at a
random location within 10◦ from the fixation point, and a distance
of 12−14 m and 6−7 m from the observer for each scene. The target
moves towards the observer along the 3rd trajectory in Figure 8 at
a heading of 𝜑𝑡 = 10◦ and a speed of 𝑣𝑡 = 2.8 × 𝑣𝑠 . The observer-
relative motion of the target is equivalent to a scene-relative motion
along the 6th trajectory in Figure 8, or𝜓𝑡 = −20◦.
Each subject completed 10 repetitions of these trials as well as

5 more filler trials with random target object headings to prevent
categorical responses. We provided mirrored motions for each trial

to ensure left-right balance for a total of 30 trials per study condi-
tion. Similar to our psychophysical study in Section 3.1, subjects
also completed a pre-study training session with a straight-ahead
heading 𝜑𝑠 = 0◦, and targets moving along 1st, or 7th trajectory (i.e.,
𝜓𝑡 ∈ ±30◦). The median completion time was 15 min.

Conditions. For each scene, we prepared two content re-design
“treatment” conditions without changing the original cameramotion
trajectory, when compared to the control conditions shown in Fig-
ures 7a and 7d. As evidenced in Figure 5c, decreasing target-scene
depth disparity, 𝑑 , reduces perceptual errors. Thus, to address this
issue, in SPORTS, the first re-design elevates the camera height, and
lowers the viewing angle for a more “birds-eye” view (Figure 7b).
As a more aggressive re-design, we also added scene elements be-
hind the target golf ball to further decrease depth disparity (Fig-
ure 7c). Across these three scenes, the average scene-target depth
disparities were 𝑑 = .1/.6/.7, respectively. Using our model and
target heading prediction framework of Section 3.2, we determined
𝜓 ′
𝑡 = 16◦/10◦/−5◦ for the three conditions respectively.
Similarly, for FLIGHT, we first added static cloud objects into

the scene to decrease the depth disparity from 𝑑 = .8 to 𝑑 = .4 as
shown in Figure 7e. For the second treatment, we took a different
approach by attempting to simulate a different scene heading by
adding a horizontal drift velocity, 𝑣 = .25 m/s, to the clouds relative
to the rest of the scene to reinforce the lateral direction of optical
flow and induce a higher perceived scene heading angle of 𝜑𝑠 = 37◦
(see Figure 8b). In effect, our model predicts that the perceived
scene-relative target heading for the target hot-air balloon was
𝜓 ′
𝑡 = 22◦/−1◦/−12◦, respectively.

Analysis and results. For both studies, we summarize the mean
response of each subject and each condition by aggregating across
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Fig. 9. Results of the application case study. The x-axis shows the scene-
relative target heading angles corresponding to individual options (1-7)
provided in the study. The red and yellow/green points represent the dis-
tribution of per-subject aggregated mean response data in control and our
model-suggested re-designed animations, respectively. The black points rep-
resent the corresponding response distribution simulated from our model
prediction. The points (𝜓 ′

𝑡 ) are vertically jittered for plot visibility.
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the 20 recorded trials. Figure 9 compares the acquired distributions
of target headings 𝜓 ′

𝑡 with the model-prediction. Across subjects,
in SPORTS, the measured mean and SEM target headings were
𝜓 ′
𝑡 = 9.1◦ ± .91◦, 4.8◦ ± .60◦ and −5.5◦ ± 1.2◦ for the control, camera

pose and additional scene content conditions respectively, while
in FLIGHT, the measurements were 𝜓 ′

𝑡 = 6.5◦ ± .71◦, −1.8◦ ±
1.5◦ and −7.5◦ ± 1.8◦ for the control, static scene and dynamic
scene conditions, respectively. Across all conditions, the ground-
truth scene-relative target heading was 𝜓𝑡 = −20◦. A repeated
measured ANOVA shows that the conditions within each study
had a significant effect on the mean responses for both SPORTS
(𝐹2,42 = 94.0, 𝑝 < .01) and FLIGHT (𝐹2,42 = 65.6, 𝑝 < .01) scenes.

Discussion. As shown by the ANOVA results, the model-guided
content re-design significantly improved the accuracy of target
heading judgments for the subjects. Our model was able to predict
the overall trend of heading judgment errors, although the exact
numerical predictions were slightly inaccurate. We attribute this per-
formance regression to the introduction of higher-order cognitive
cues in the more realistic stimuli and discuss its implications further
in Section 6. Nevertheless, our model is still capable of providing
a first-order approximation of the relationship between observer-
relative scene and target velocities (®𝑣𝑠 and ®𝑣𝑡 ) and the scene-relative
target velocity ( ®𝑤𝑡 ). In real-world applications, we can leverage
these predictions to provide guidance and feedback on the overall
estimation difficulty, and anticipated motion judgment errors users
are likely to make when observing dynamic imagery.

6 LIMITATIONS AND FUTURE WORK
Additional cues. Beyond image space, stereo [Burlingham and

Heeger 2020] and vestibular [DeAngelis and Angelaki 2012] cues
from emerging 3D displays may also alter motion perception, to-
gether with semantic and cognitive influences, including human
body pose [Blake and Shiffrar 2007], visual path information [Li et al.
2009], and object shadows [Kersten et al. 1997]. Meanwhile, many of
these phenomena rely on higher-order cognitive cues beyond low-
level visual operators. For example, understanding the relationship
between the motion of objects and the shadows they cast requires
spatial reasoning and is a non-intrinsic, learned skill in humans
[Van de Walle et al. 1998]. In this work, we chose to first establish
a baseline for human perception at an abstraction level where all
high-level cues were absent, and the only source of information
was the optical flow derived from motion within a 3D environment.
After confirming significant perceptual errors under these abstract
baseline conditions, we then constructed a more realistic synthetic
scene in Section 5 to determine whether any of the baseline esti-
mation errors persist and to assess if our model can still mitigate
these errors within the scope of our chosen parameterization, de-
spite the introduction of high-level factors. We believe that these
experiments successfully demonstrate the effective application of
optimizing animation design pipelines as a first-order measurement
and mitigation of human perceptual errors.

Cross-conditions. In Section 3, we characterize the scene dynamics
with self movement (direction and speed) and content depths (with
regard to the object). Exploring additional combinations of scene

and object dynamics, such as rotations and vertical movements,
leads to a prohibitively large number of trials. This poses challenges
due to participants’ limited attentive capacity for maintaining data
accuracy, as well as the associated financial costs or running long
studies. Therefore, this research focuses on separately measuring the
effects from individual dimensions. To study the cross-conditions
while maintaining feasibility, we plan to first analyze a primary
effect via a pilot study similar to [In 2017], and extend the work
towards a dimension-reduced study.

Motion degrees of freedom. We study perceptual errors for hor-
izontal motion patterns along transverse (horizontal) planes—the
more common human motion [Hummel et al. 2016]. However, both
object and scene motions together form a complex 12 degrees of
freedom (DoF) problem (6 DoF each for the self and the object)
across all planes, including the coronal and sagittal. In such case,
a rotating observer or object will elicit a moving FOE [Danz et al.
2020]. Therefore, introducing a temporal movement factor to the
FOE, a.k.a., its locus, could be a key to modeling arbitrary motions
[Rangarajan and Shah 1992]. Additionally, camera motion analysis
using a large-scale egocentric motion dataset (e.g., Ego4D [Grauman
et al. 2022]) could establish a coordinate system tailored for the most
prevalent human motion patterns.

Perceptual attention and confidence. In highly complex scenarios,
various objects may move in different directions. The confound-
ing optical flow may further compromise observers’ perception in
understanding the motion [Warren et al. 1988; Warren Jr and Han-
non 1988]. Moreover, because of humans’ selective attention, the
movement of multiple objects can also interfere with the visual sen-
sitivity towards a specific target [Min and Corso 2019]. Our current
model assumes full attention to a single target. In the future, we
plan to explore the influence from optical flow entropy toward a
more content-aware probabilistic model.

7 CONCLUSION
In this study, we investigate a universal yet under-investigated factor
in computer graphics: human perception of how displayed objects
move in dynamic environments. Our data reveals a consistent and
systematic bias in how object motions are interpreted, influenced by
scene dynamics and content depth. Additionally, we demonstrated
how the findings provide quantifiable guidance for animation and
game design, helping to reduce users’ perceptual errors. We hope
this work will inspire future research in the community, towards
developing predictive models that compensate for perceptual limi-
tations and enhance human performance with computer graphics.
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A UNFILTERED PSYCHOPHYSICAL DATA ANALYSIS
In this work, we rejected a significant number of subjects via our task understanding filter, as described in Section 3.1, to ensure high quality
data acquired from crowdsourced study participants. Here, we present the psychometric curve fitting results for the unfiltered data to serve as
a comparison to the results included in the main manuscript. In Figure 10, we replicated Figure 5 to serve as a direct comparison between the
filtered and unfiltered data. The psychometric threshold for the reference condition was 𝜇𝑟 = 4.2◦ when compared to 𝜇𝑟 = 6.2◦ as reported for
the unfiltered data. The Discussion about the trends and patterns of the psychophysical study results in Section 3.1 are largely unchanged for
the unfiltered data, albeit with a much stronger bias effect.
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Fig. 10. Unfiltered Study Data Analysis. Results of processing the data without applying the task understanding filter are visualized for comparison with
Figure 5. See the caption for Figure 5 for details on the visualization designs.

B PSYCHOMETRIC AND POLYNOMIAL FITTING
Below, we list the parameters for all the psychometric curves fitted using the data collected from our psychophysical study of Section 3.1:

Table 1. Psychometric parameters for different scene speeds, headings, and depth ratios.

Attribute Value Threshold, 𝜇 (◦) Slope, 𝜎 (◦)

𝑣𝑠 (m/s)
0.5 6.5 8.8
1 6.2 5.7
3 4.7 4.4

𝜑𝑠 (degrees)
5 2.1 5.7
15 6.2 5.7
25 9.1 4.4

𝑑

0.05 10.8 7.6
0.3 9.2 6.2
0.7 6.2 5.7
0.9 1.6 5.2

These psychometric parameters were then regressed to fit polynomial curves with fitted parameters 𝜇𝑟 = 6.2◦ and 𝜎𝑟 = 5.7◦.:
𝜇 (𝑣𝑠 , 𝜑𝑠 = 15◦, 𝑑 = .30) = 𝜇𝑟 × (.931 + .077𝑣𝑠 + .006𝑣2𝑠 ),

𝜇 (𝑣𝑠 = 1 m/s, 𝜑𝑠 , 𝑑 = .30) = 𝜇𝑟 × (.045 + .054𝜑𝑠 + .001𝜑2𝑠 ),
𝜇 (𝑣𝑠 = 1 m/s, 𝜑𝑠 = 15◦, 𝑑) = 𝜇𝑟 × (.531 − .171𝑑 + 1.390𝑑2),
𝜎 (𝑣𝑠 , 𝜑𝑠 = 15◦, 𝑑 = .30) = 𝜎𝑟 × (1.486 − .302𝑣𝑠 ),

𝜎 (𝑣𝑠 = 1 m/s, 𝜑𝑠 , 𝑑 = .30) = 𝜎𝑟 × (1.093 − .011𝜑𝑠 ), and,
𝜎 (𝑣𝑠 = 1 m/s, 𝜑𝑠 = 15◦, 𝑑) = 𝜎𝑟 × (1.308 − .459𝑑) .

(7)
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