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Fig. 1. Catch-up eye movement performance influenced by visual features. (a) shows a soccer gaming scenario where the gatekeeper player must accurately
follow the sudden motion of a kicked ball to take action. This process requires the player to visually estimate the change of the ball’s motion pattern and
adjust the eye movement accordingly to catch up. Depending on game designs and difficulties, the ball may appear differently on screen (varying visual signal
strength) or move at different speeds. (b) depicts our prediction of user catch-up latency influenced by visual signal strengths and ball motion speeds.

In graphics applications featuring dynamically moving visual targets — such
as film and gaming - we have to rotate our eyes to follow objects as they
move across the screen. Because target motion is often unpredictable and
ever-changing, we must rapidly respond to motion cues and adjust eye
movements to maintain the target within the fovea, a process known as
catch-up. This catch-up behavior reflects how efficiently the eyes react to
and compensate for sudden changes in motion, making it a critical indicator
for both task performance and the overall visual experience. In this work,
we study and measure the eye catch-up performance during visual tracking.
In particular, we present a behavioral analysis that predicts users’ reaction
latency to abrupt target motion based on target visibility. Our numerical
analysis and human subject studies evidence the effectiveness and generaliz-
ability. We further show how the catch-up metric can be applied to evaluate
video quality, adjust game difficulty, and optimize display configurations
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for enhanced user performance. We envision this research to create a com-
putational link between human perception and behavioral performance in
dynamic graphics contexts.
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1 Introduction

When playing a video game or watching a film, the ability for our
eyes to follow a moving target on screen and maintain it within
the clear foveal vision—known as visual tracking [39]—is a critical
measure of both task performance and experiential quality [49]. Real-
world applications are volatile; instead of uniform speed, targets
usually move with unpredictable patterns, requiring observers to
continuously adapt their eye movements to catch up. To do so, we
rely on anticipatory estimates of the target location and velocity,
followed by rapid eye movements to realign our gaze as early and
accurately as possible [46, 47].
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Studies in perceptual computer graphics commonly focus on mea-
suring and modeling visual acuity [41], such as detecting artifacts
due to altered rendering in resolution [58] and color [21, 35]. To fur-
ther understand how visual content influences our behaviors, recent
research has measured reactive visual performance, such as spa-
tial landing errors [2] and temporal reaction latency [33]. Existing
graphics research studies image-induced behaviors, such as the re-
action latency to peripheral onset targets [20]. However, observers’
catch-up performance to dynamic changes during continuous obser-
vation remains underexplored despite its ubiquity in downstream
applications, primarily due to the difficulties of characterizing the
complex, high-dimensional spatio-temporal visual factors.

Here, we measure and analyze users’ catch-up latency to dynam-
ically moving targets during continuous visual tracking. To this
aim, we first conduct a series of psychophysical experiments to
characterize the factors influencing the catch-up performance. We
observed that the scales of visual signal strength (regardless of indi-
vidual features) and speed changes (regardless of pre-conditioned
eye movements) significantly impact the catch-up eye movement
performance. Building on the data and insights, we regress an inte-
grated and analytical prediction. Numerical analysis validates the
prediction accuracy and generalizability. In addition, we leverage
the research to practical scenarios, including evaluating animation
design quality, managing game difficulty through character appear-
ance and target motion adjustments, and optimizing video content
for varying eye-display distances. We hope the research tightens
the connection between visual perception and reactive behaviors
for dynamic graphics applications.

Overview of scope and limitations. This work analyzes human vi-
sual tracking performance in diverse dynamic environments through
the lens of catch-up eye movement latency, aiming to advance visual-
performance-aware computer graphics literature beyond static set-
tings. However, our data-driven model is not intended to represent
the neurological mechanisms of sensorimotor control. Given the
spatio-temporal complexities, we capture and predict relative effect
trends to demonstrate their guidance potential rather than precise
temporal values for direct algorithmic deployment.

2 Related Work
2.1 Visual Perception Guided Graphics

Measuring and modeling visual perception has been explored in
both foundational and applied perception domains, such as design
[25] and photography [30]. An understanding of peripheral vision
enables foveated rendering, a technique that improves the efficiency
of rendering for eye-tracked displays with a lower quality in the
periphery [32, 59]. Many foveation techniques exist, such as ren-
dering with lower-resolution frames [48], using image summary
statistics [58], via neural networks trained with a perceptual loss
[34], for neural radiance fields [18], with reduced color fidelity [21],
with preserved motion cues [55], or attention-based foveation [37].
Perceptually-inspired image quality metrics predict the perceived
quality of images based on how the visual system processes visual
features [42, 43]. A common feature of existing perceptual models is
that they usually focus on visual acuity. However, a significant gap
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remains in understanding how we react and perform in real-world
tasks.

2.2 Visual Behavior & Performance

Predicting users’ gaze behavior when interacting with computer
graphics systems is critical for understanding the overall experi-
ence and task performance. The combination of object and eye
movements creates visual motion that serves as a cue for main-
taining fixation and can alter the perceived location of objects in
the visual field [60]. Souto and Kerzel [53] modeled a variable cou-
pling of visual and motor selection as two separate processes that
occur during tracking to coordinate catch-up saccades and pur-
suit. Arabadzhiyska et al. [1] developed a model to predict saccade
dynamics in head-mounted displays. Duinkharjav et al. modeled
saccade latency for static images based on image features [20, 22].
In neurophysiology domains beyond computer science, stochastic
models have been established to simulate the underlying catch-up
saccade mechanisms during smooth pursuit [46], which are found
asymmetrically dependent on target velocity [7]. However, current
behavioral models commonly consider static images instead of dy-
namic content with continued observation, or simplified stimuli
that do not fully represent high-dimensional graphics features.

2.3 Eye Movement in Dynamic Content

Understanding observers’ dynamic eye movements has implications
for implementing and optimizing graphics applications. Researchers
have developed learning-based methods for predicting gaze scan-
paths in VR [5, 31, 44]. For instance, background motion near a
target object can influence observers’ ability to intercept motion
[10], and therefore the following eye movements [61]. Meanwhile,
increasing target contrast can increase observers’ eye velocity gain
during smooth pursuits [54]. Additionally, in head-mounted dis-
plays, visual artifacts such as phantom array and motion blur can
impact saccadic error [27]. However, due to high-dimensional inter-
actions between image features, we lack a comprehensive analyzes
of the effects of appearance on eye movements for complex, natu-
ralistic stimuli. Overall, while many metrics influence behavioral
performance in visual tracking [38, 54], in practice, initial latency
for catch-up eye movements is particularly relevant in computer
graphics applications, as delays in foveating and tracking a visual
target can cause observers to miss critical events.

3 Measuring Catch-Up Eye Movement Latency

We determine the extent to which visual target visibility affects the
latency of catch-up eye movement via eye-tracked psychophysical
experiments. Specifically, we manipulate the visibility of targets by
adjusting the luminance and color contrasts, as well as by intro-
ducing external noise. By analyzing the effects of changing target
visibility across different perspectives of image manipulation, we
identify common trends of human behavior, and ultimately regress a
computational model for predicting human performance in tracking
dynamic visual content.
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Fig. 2. Experimental protocol, stimuli, and data. (a) Participants visually tracked target stimuli that appeared on the display, and indicated via button press its
direction of movement. Eye position traces were recorded using an eye tracker. (b) Target visibility was modulated by adjusting different visual features across
the LUM, NOISE, and COLOR experiments. Stimuli with signal strength = 1x were calibrated to be at threshold of visibility, and scaled up by signal strength.
(c) Catch-up onset distributions were determined by detecting the latest saccades that moved away from the fixation zone during each trial.

3.1 Experiment Design

Participants. Five participants (ages 22 - 28, 3 male) with normal
or corrected-to-normal vision were recruited for a series of three
psychophysical experiments. Each experiment was conducted dur-
ing a separate session, and each session consisted of two blocks of
120 visual target tracking tasks each. Each experiment took a total
of about 40 minutes to complete. All experimental protocols were
approved by an institutional review board (IRB).

Setup. Experimental stimuli were displayed on a 27.5 inch OLED
monitor (LG 27GR95QE) with a refresh rate of 240 Hz, a spatial
resolution of 2560 X 1440 pixels, and subtended a horizontal field of
view of 55°. As shown in Figure 2a, participants seated throughout
the experiments, and their head positions were stabilized with a
chin rest. Eye position signals were recorded using a 150 Hz eye
tracker (GazePoint 3), and was calibrated before each block of trials.

Stimuli and design. Participants were instructed to visually track
targets that appeared and moved across the screen. As illustrated in
Figure 2b, targets were solid disks with a diameter of .5 dva (degrees
of visual angle) placed on top of a neutral gray background (with
measured mean luminance of 54 cd/m?), and moved at a constant
speed. The visibility and speed of the targets varied across trials and
constituted the different conditions across which we compared the
catch-up performance. We leverage the eye-tracking data collected
as participants visually tracked the targets to quantify a measure of
performance as further detailed in the Analysis paragraph.

One of the main factors that affect visual tracking performance
is target speed [54]. Therefore, we varied the target speeds v €
{7.5, 15,30} dva/s (see supplementary video to compare conditions).
Additionally, as discussed in Section 2.3, the visibility of visual tar-
gets significantly affects catch-up performance. Thus, across our
three experiments, we modulated target visibility within three dif-
ferent features. Specifically, we studied how performance is affected
by luminance contrast in low external noise (LUM experiment), and

high external noise (NOISE experiment), as well as by color contrast
(COLOR experiment).

In the LUM and NOISE experiments, the luminance contrast of
the target varied between conditions with zero background noise in
LUM, and a uniform additive noise with RMS contrast of 23% added
to the background in NOISE. In the COLOR experiment, the color of
the disk varied along the L — M axis in DKL coordinates [19], while
the luminance was kept equal to the background. For applications
of the DKL color-space in computer graphics, see [21, 43].

We parameterize target visibility in units of “just-detectable con-
trast thresholds”, and refer to this parameter as the signal strength,
s. That is, for a target stimulus with a contrast value of c, its cor-
responding signal strength equals s = ¢/c;p,, where ¢y, is the just
detectable threshold contrast (i.e., inverse of the sensitivity) of the
target stimulus. In LUM and NOISE, contrast was quantified using
Michelson contrast, whereas the DKL color contrast is used in the
COLOR. Even though the specific contrast values of the targets vary
significantly across experiments, the generalized signal strength pa-
rameterization allows us to validate our hypothesis that catch-up
performance demonstrates similar first-order patterns, irrespective
of the specific visual features being manipulated.

Since we require the contrast sensitivity thresholds calibrated for
each individual in each experimental task (see further discussion
in Section 6), prior to each experiment, the sensitivity in each task
was determined via a 4-down-1-up adaptive staircase procedure.
The calibration featured the same disk from its corresponding main
experiment, moving either leftward or rightward at a speed of v =
30 dva/s. Participants progressed through the staircase by visually
tracking the target and indicating the direction of the disk’s motion
via button press. Staircase steps were incremented in reciprocal
contrast units with a step size = 5 for six reversals, and the average
of the last three reversals were used to determine the sensitivity.

Based on the calibrated contrast threshold, the signal strength of
the main experiments were determined. As illustrated in Figure 2b,
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across the experiments, signal strength values of s € {1, 2,4, 8} were
used. Overall, the target’s 3 speed conditions x4 signal strength
conditions were repeated 10 times per block for a total of 120 trials.

Procedure. Each trial began with a button press. As shown in
Figure 2a, following a randomized stimulus onset delay of 0 — 1 s,
the target stimulus replaced the fixation crosshair and moved ei-
ther leftward or rightward across the screen at a constant speed
determined by the trial condition. Randomizing the stimulus onset
delay and target movement direction minimized anticipatory eye
movements. The target remained in motion for 1 — 1.5 s before dis-
appearing. At the end of each trial, participants indicated via button
press whether the target object moved leftward, rightward, or if
they failed to track it. Trials in which participants failed to track the
target or responded incorrectly were repeated at the end of each
block. Participants were instructed to take breaks at any time, and
there was a mid-session break enforced for sessions exceeding 30
minutes to minimize fatigue and/or discomfort of the participants.

Analysis. As motivated in Section 2.3, the study focuses on the
latency for catch-up eye movements, as delays in foveating and
tracking a target can cause missed visual details and poor task per-
formance. Catch-up movement is primarily driven by two concur-
rent mechanisms triggered at stimulus onset: pursuit eye movement
control and a corrective saccadic eye movement [46]. Pursuit eye
movement is tuned to synchronize the movements of the eye and
the target so that a moving target remains foveated [51]. However,
the onset of pursuit takes .1 s or longer to fully match the target’s
motion with an abrupt change [45]. During such delays, the posi-
tional error between the target and eye positions accumulates and
necessitates a catch-up saccade that corrects this positional offset
[46]. In our analysis, we leverage the onset of this corrective saccade
as an indicative marker to quantify catch-up latency.

To detect the corrective saccade, we utilize the recorded eye po-
sition traces. Eye position traces were smoothed by a Butterworth
filter with a 20 Hz cut-off prior to analysis. Trials where participants
failed to maintain fixation at the beginning of the trial, and failed to
track the target were excluded from analysis, and constituted 2.9%
of all trials (see Supplement A for data processing details).

Figure 2c shows an example trace of target motion to the par-
ticipant’s gaze trajectory. Eye velocity was calculated using the
central difference method and saccades were detected using a fixed
velocity threshold [26]. Velocity cut-off criteria of 12.5, 25, and
50 dva/s were applied for stimuli moving at 7.5, 15, and 30 dva/s,
respectively. The main corrective saccade was identified using a
positional criterion that selected the latest saccade which shifted
the eye position away from the initial fixation distribution by more
than two standard deviations towards the target. The initial fixation
distribution was established by aggregating the eye position data
within the —0.2 < ¢ < 0.1 s window relative to stimulus onset. Sac-
cades detected during ¢t < 0.1 s were excluded, as such movements
could not have been programmed in response to the stimulus onset
[4, 17]. Each saccade was manually inspected to ensure proper trial
counting from the detection algorithm.

Catch-up latency was also examined across all trials to check for
signs of fatigue or decline in performance. Participants exhibited
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Fig. 3. Catch-up performance of a representative participant. Mean catch-up
latencies are plotted against signal strength, and compared across targets
at varying speeds. Each experiment is represented by a distinct color (see
Figure 2b for the corresponding stimuli). Error bars denote +1 Standard
Error Mean (SEM). See Figure 4 for plots of the remaining participants.

consistent catch-up latency between early and late trials, an indica-
tor of non-elevated fatigue [16]. Please see Supplement C for detailed
plots on catch-up latency time throughout each participant’s trials.

To further validate data consistency across individuals, we lever-
age a generalized linear mixed model (GLMM) to measure individual
participants’ data variability [8]:

catch-up latency ~ signal strength X object speed + (1 | ID),

where signal strength, object speed, and their interaction were mod-
eled as fixed effects, and participant ID was included as a random
intercept [23, 24]. Additionally, we also conducted a post-hoc power
analysis to evaluate the sensitivity of our experimental design [9]

3.2 Results

We present our main findings for a representative participant’s ex-
perimental data across the 12 conditions in Figure 3. Catch-up laten-
cies improve by up to 0.166/0.117/0.130 s in LUM/NOISE/COLOR
respectively, based on both the target speed and signal strength.
Increasing signal strength provides diminishing benefits until per-
formance nears its peak at a mean latency of .216/.218/.212. Notably,
at high signal strength, faster targets induce faster catch-up, while
at low signal strength, the opposite holds.

Two-way ANOVA tests revealed a significant main effect of tar-
get speed (p < 0.01) and signal strength (p < 0.001) on catch-up
latency across all experiments, indicating that target speed and sig-
nal strength strongly influence catch-up latency (see Supplement B
for detailed ANOVA results). Additionally, there was a significant
interaction between target speed and signal strength across all ex-
periments (p < 0.001), suggesting that the effect of object speed on
latency depends on the level of signal strength.

The Spearman correlation of mean latencies found between LUM
& NOISE, LUM & COLOR, and NOISE & COLOR experiments were
p=0.96 (p < 0.001), p = 0.94 (p < 0.001),and p = 0.99 (p < 0.001)
respectively, indicating a very strong positive monotonic relation-
ship. These results suggest that the catch-up latencies measured in
each experiment are highly correlated to each other with a high
degree of consistency for the individual.
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Fig. 4. Catch-up performance of main study participants. Mean catch-up latencies of main study participants are visualized in the same style as in Figure 3.

The remaining four participants demonstrate similar trends (Fig-
ure 4) and statistical significances across conditions and experiments,
as detailed in Supplement B. All the 15 experimental datasets ex-
hibit a significant signal strength effect on latency. Among them, 12
exhibit significant target speed effects on latency, and 12 exhibit a
significant interaction.

The GLMM analysis estimated a small variance component for
participants (random intercept of 0.0 for LUM, NOISE, and COLOR),
indicating that individual differences contributed little to the over-
all variance. This suggests that with five participants and a large
number of trials per participant (> 210 per condition), our design
provided precise within-participant estimates of catch-up latencies.
For the power analysis, we assumed a = 0.05, a sample size of n = 5
participants, and at least 210 repeated measurements per partic-
ipant. Under these conditions, a sensitivity analysis showed that
our study had 80% power (1 — = 0.80) to detect small effect sizes
(1 > 0.0297).

3.3 Discussion

The ANOVA results indicate that both target speed and signal
strength significantly influence catch-up eye movement latencies.
Thus, these factors should be considered independently, as evi-
denced by the significant interaction between them. As shown in
Figure 3, increasing signal strength accelerates catch-up. Similar

relationships between the visibility of visual targets and their corre-
sponding reaction times have been observed in different visual task
contexts [20].

Crucially, apart from target visibility, its speed also affects catch-
up performance. Faster speeds impair latencies at low signal strengths,
suggesting that the visual tracking task becomes more challenging.
We hypothesize that this decline in performance occurs because
faster-moving low-visibility targets exit the fovea and enter periph-
eral vision more quickly, where visual acuity is reduced, and target
localization becomes more challenging. However, the effect of this
performance deterioration might not apply when the signal strength
is high and the target can be localized easily even in the periphery.

The observed consistency across different visual features modu-
lated by their signal strength suggests that the catch-up onset may
depend on a unified signal encoding of the target visibility. While
further physiological research is needed to validate this hypothesis,
the presence of such first-order effects provides practical guidance
to develop computational methods for downstream graphics appli-
cations. Motivated by these statistical insights, we then integrate
all experimental data collected in our studies to construct an exe-
cutable prediction for catch-up latency. Across all participants, the
dataset comprised approximately 1100 trials, providing a substantial
amount of data for estimating within-participant effects.
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3.4 Regressing a Predictive Model

As discussed in Section 3.2, increasing signal strength yields dimin-
ishing performance benefits, in agreement with prior work indi-
cating that catch-up latency plateaus and performance saturates
beyond a certain ceiling [54]. To effectively model this saturation
behavior, we define the catch-up onset rate,

R=1/t, 1)

where t represents the mean latency. This approach is consistent
with established practices in models such as the Drift Diffusion
Model (DDM) [50] and LATER models [14], both of which are com-
monly used to model response latencies in neuroscience and psy-
chology (see [20] for a review relevant to perceptual graphics appli-
cations). The adaptation rate, R, is modeled as a sigmoid function:

1- e—/ls
R(s) = (Rmax — Rmin)—_)L + Rmin, (2)
1+e™4S

where Rpyqx is the peak rate, Ryip is the minimum rate with R(s =
0) = Rmin, A determines the slope of the sigmoid, and s is signal
strength.

To enable the model to predict the catch-up rate across differ-
ent target speeds, v, we fit polynomial functions to Rmax, Rmin,
and A based on our experimental data. Polynomial fits using scipy
curve_fit to all LUM/NOISE/COLOR data from Figure 3 yields
the following coefficients:

Rmax (log(v)) = 2.40 + 506 log(v) — .075 log(v)?
Rimin(log(v)) = —3.19 + 4.74log(v) — 1.06 log(v)? 3)
Ao) = —.174 + 441 log(v).

The model predicts mean catch-up latencies, as in Figure 5, by first
calculating the rate using Equations (2) and (3), and then deriving
the mean latency using the relationship in Equation (1).

Our dataset suggests that the range of catch-up latency increases
with velocity. As in 3.1 and [56], higher velocities likely cause the
target to move faster into the periphery, leading to poorer reaction
performance bounds. Therefore, the quadratic term in R is used
to depict this effect, where the performance bounds decrease with
faster velocities. Furthermore, a higher-order polynomial allows
the model to capture nonlinear dynamics, and a quadratic term
being the highest term helps to prevent overfitting to our data, as is
common with very high-order functions.

The sigmoid formulation is motivated by the way performance
gradually increases with signal strength, reflecting both diminishing
gains at high intensities and the inherent variability in perceptual
and visuomotor processes. This reflects the empirical observation
that responses transition smoothly, from chance to asymptotic per-
formance, due to uncertainty in sensory processing [36].

4  Evaluating Prediction Effectiveness

4.1 Numerical Analysis

We first show that the model (1) generalizes across visual features —
e.g., a model trained on luminance can predict behavior for color —
and (2) accurately captures behavioral patterns in Section 3.2.
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Fig. 5. Model visualization. The predicted mean catch-up latencies of our
model fitted to all experiment data, compared to the mean latency data it
was fit on. Latencies for each target speed, and signal strength conditions
are depicted in different colors, along with overlaid level sets indicating
equivalent performance. Measured latencies are shown as individual points
using the same color mapping.

Generalizability. We fit our model’s parameters described in Equa-
tions (2) and (3) to the LUM, NOISE, and COLOR experimental re-
sults, separately, and measure how well each model’s predictions
agree with the results of the other two experiments. The R? scores for
the LUM model were .99/.90/.93 across the LUM/NOISE/COLOR
datasets respectively. Similarly, NOISE and COLOR model scores
were .90/.97/.79 and .95/.83/.99 respectively. As expected, R? scores
are highest for models evaluated against their respective trained
datasets. We further analyzed the data variability using signal-to-
noise ratio (SNR) and observed low SNR (-4.3dB and -0.1dB) for the
two participants with slightly lower R? ( 0.72) vs. the average 1.14dB
for the other three. This suggests that these participants may exhibit
generally higher individual noise, but their average trend still aligns
with other participants.

Crucially, we observe that each model presents high fitting scores
across all datasets (R? > .79), indicating that our signal strength-
based model generalizes across different visual features [15].

Cross-user Generalizability. We use a leave-one-out cross vali-
dation to evaluate fitted models against unseen data. Specifically,
model parameters in Equation (3) are fitted using data from four
participants, and goodness-of-fit is assessed on the remaining. The
R? scores for each participant (.80/.96/.92/.72/.72) indicate that
our model effectively captures behavioral trends excluded from the
fitting process.

4.2 Extending to Continuous Viewing

In addition to the singular trials in Section 3.1, we conducted another
study to test our model with continuous viewing, where the target’s
movement spans a broader range of directions and dynamics.
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Fig. 6. Stimuli and results for continuous viewing study. The stimuli (a). The stimuli were altered along global luminance contrast similar to Figure 2, where the
disk first moved at 5 dva/s along the red line for 1-1.5s, then changed by Awv. The study results are shown in (b). The individual points reflect mean responses
for each participant, color coded by target velocity. Error bars above the scatter plots indicate +1 SEM of the difference between target velocity within each
signal strength, and between different signal strengths overall. ***p < 0.001, **p < 0.01, *p < 0.05

Participants and setup. Twelve participants (ages 21 - 28, 5 female)
with normal or corrected-to-normal vision were recruited to perform
this continuous visual tracking task, as detailed below.

Stimuli, conditions, and procedure. Participants were instructed to
visually track a target that continuously moved around the screen
for the entire duration. The target was the same solid disk as in Sec-
tion 3.1 for the LUM condition. We also applied similar eye tracker
and sensitivity threshold calibration procedure. The target’s motion
and visibility were modulated across conditions, with two speeds
(v € {10, 25} dva/s), and three signal strengths (s € {1.5, 6, 8}).

Notably, the target disk moved continuously in random directions
instead of being limited to horizontal trajectories. At the start of
each trial, the target was launched in a random direction (anywhere
360 deg) with an initial velocity of 5 dva/s. After 1-1.5s, the target’s
speed suddenly changed by Ao of either 10 or 25 dva/s, while main-
taining the same trajectory. The random direction for each trial
was algorithmically selected such that the target would not move
beyond the edge of the screen.

Although each trial was analyzed independently, the study was
conducted in a continuous fashion with no breaks between trials.
That is, upon the completion of each trial, a new trial began im-
mediately, again in a new random direction. Please refer to the
supplementary video for an example.

Analysis, results, and discussion. Following a similar methodology
in Section 3.1, the s = 8 condition was used as a normalization
benchmark. Since target motion was now presented in a random
direction spanning 360 deg, rather than restricted to horizontal mo-
tion, we first projected the x and y gaze coordinates to the direction
of target motion. This transformation allowed us to analyze the data
along the target trajectory as in Section 3.1.

A two-way ANOVA reveals a significant main effect of both sig-
nal strength (F = 56.19, p < 0.0001) and target speed (F = 19.51,p <

0.01) on catch-up latency, with a significant interaction between
groups (F = 13.19,p < 0.001). Mean catch-up latencies were ag-
gregated from each participant, and were compared to our model
predictions in Figure 6b. A repeated measures ANOVA on the mean
catch-up latencies reveals a significant effect of target speed on
catch-up latency for s = 1.5 (F = 29.40,p < 0.001), other thans = 6
where the predicted latency difference between target speeds is also
very low (3.52 ms, shorter than one eye tracking frame) due to the
high visibility. The analysis shows the model’s prediction trend
extends to scenarios where the targets move omnidirectionally and
observers perform visual tracking continuously.

5 Application Case Studies

The regressed performance model enables us to support various
graphics applications. Rather than conducting ad-hoc user studies
to analyze performance for each content design, our model pro-
vides approximate predictions, enabling rapid and cost-effective
estimations that inform design decisions.

5.1 Analyzing Video Quality on Event Tracking

In video production, creators define how target elements appear, but
ensuring fast-moving events remain trackable is an underexplored
challenge critical for viewer comprehension and engagement [52].
While existing perceptual metrics assess visual quality, our model
offers a complementary perspective by evaluating their impact on
event tracking. Here, we demonstrate in the presence of complex
stimuli and scene backgrounds as a user study.

Participants and setup. Fourteen participants!(ages 22 - 28, 6 fe-
male) with normal or corrected-to-normal vision were recruited for
a similar psychophysical experiment as in Section 3.1, where they
were asked to complete a series of visual target tracking tasks. The

"Two participants (1 female) were excluded for inability to perform the tasks (excessive
blinking from dry eyes, which disrupted eye-tracking accuracy, and colorblindness).
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Fig. 7. Scene, stimuli, and results of the application case study for videos and games. The scenes evaluated were a soccer field (a) and an FPS game map (b).
The stimuli were altered along global luminance contrast in (c) and color contrast in (d). The study results are shown in (e) and (f). The individual points
reflect mean responses for each participant, color coded by target velocity. Error bars above the scatter plots indicate +1 SEM of the difference between target
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overall experimental setup, protocols, and IRB remain the same, but
feature major changes in the visual stimuli.

Stimuli and design. During each trial, as shown in Figure 7a, par-
ticipants viewed a scene featuring a soccer goal-keeping video and
were instructed to visually track a target ball (Figure 7c) moving
either leftward or rightward. The target’s motion and visibility were
modulated across conditions, with two target speeds (v € {14, 34}
dva/s), and three target visibility levels (s € {1.5, 6, 8}). The target
speed was controlled by applying a force to the ball to simulate
more realistic motion rather than maintaining a constant velocity.
Target speed was calculated by averaging the ball’s velocity over
the first .2 s of motion. Each condition was repeated 20 times for a
total of 120 trials and was completed in about 25 min during a single
session. To avoid learning effects from repeated exposure to the
same clips, each instance of a condition included slight variations
in motion trajectories and camera angles. Before the experiment,
participants completed an adaptive staircase to calibrate the global
contrast of the video to determine the just-detectable threshold of
successfully tracking the target.

Analysis and results. Catch-up latency measurement analysis was
unchanged from Section 3.1, albeit with more relaxed gaze tracking
error criteria (see Supplement B). Similar to Section 4.2, the s = 8
condition was used as a benchmark. A two-way ANOVA reveals a
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significant main effect of both signal strength (F = 24.12, p < 0.001)
and target speed (F = 13.53,p < 0.01) on catch-up latency, with
a significant interaction between groups (F = 20.54,p < 0.001).
Mean catch-up latencies were aggregated from each participant,
and were compared to our model predictions in Figure 7e. A re-
peated measures ANOVA on the mean catch-up latencies reveals a
significant effect of target speed on catch-up latency for both s = 1.5
(F =24.96,p < 0.0001) and s = 6 (F = 6.71,p < 0.05) conditions.

Discussion. The result suggests that our model can effectively
predict periods when observers are unable to visually track moving
visual events, even when the target and scene backgrounds are more
complex. The results reflect the significant effects of signal strength
and target speed on catch-up latency as discussed in Section 3.3.
This contrasts with prior studies on static images, such as [20],
which do not account for target speed as a factor. Therefore, this
study underscores the model’s potential application in providing
appearance and motion design guidance to ensure critical dynamic
events are visible to observers.

5.2 Designing Difficulty Levels in Gaming

In gaming, how quickly a player can track and hit moving targets
is a core indicator of game difficulties [13, 57]. However, designing
different game difficulties commonly requires iterative player tests;
automated difficulty control remains an open challenge [6]. Here,



experiment with the model’s capability in guiding game difficulty
design via players’ catch-up delay to targets as a metric. The study
was completed by the same participants as Section 5.1, following
nearly identical procedures, except for environment and target stim-
ulus appearance differences. Notably, we extend the conditions to
non-zero initial velocity before transitioning to another. This is to
simulate shooter game scenarios.

Stimuli and conditions. At the start of each trial, as illustrated in
Figure 7b, a solid disk target of the same design as in the COLOR
experiment appeared to replace the fixation crosshair, and moved at
an initial speed of vy € {0, 10} dva/s. After 1—-1.5 s, the target’s speed
suddenly changed by Av = 20 dva/s in either horizontal direction.
Throughout every trial, the camera moved in a random forward
direction. Target visibility conditions and number of repetitions
remained unchanged as in Section 5.1.

Analysis and results. The same analysis procedure from Section 4.2
was used to detect catch-up saccades, with the s = 8 condition was
used as a benchmark. A two-way ANOVA reveals a significant main
effect of both signal strength (F = 210.99,p < 0.001) and target
speed (F = 20.84, p < 0.001) on catch-up latency, but with no signif-
icant interaction effect. Mean catch-up latencies were aggregated
as in Section 5.1, and compared to model predictions in Figure 7f. A
repeated measures ANOVA on the mean catch-up latencies reveals a
significant effect of target speed on catch-up latency for both s = 1.5
(F =24.96,p < 0.0001) and s = 6 (F = 6.71,p < 0.05) conditions.

Discussion. We observe that, despite the added complexity of the
initial velocities, the behavioral trends remain consistent with our
model predictions. Notably, a faster initial velocity significantly in-
creases catch-up latency, as in Figure 7f. This motivates interesting
future work on understanding object tracking while the eyes are
already engaged in pursuit. Overall, our model successfully captured
performance trends, even under extremely challenging conditions.
Observers faced increased target movement complexity, global optic
flow from camera motion, and an off-white background adaptation—
conditions not tested in our prior experiments. The consistency of
the behavioral trends in these scenarios suggests that our findings
can reliably extend to more complex and interactive contexts, serv-
ing as a potential numerical guideline for game difficulty design
that reduces player testing cycles.

5.3 Viewing Conditions Altering Visual Performance

In Figure 8, we show examples where lighting and eye-display dis-
tances may induce visual tracking performance variances.

Lighting conditions. While driving at night, drivers’ target track-
ing performance may be significantly compromised. Although ex-
isting video quality metrics quantify how different lighting changes
appear to observers [42], the effect scales may differ from task
performance. In Figure 8a, we took a rendered animation and simu-
lated varied lighting levels. The temporally averaged SSIM-based
visual similarity and our predicted catch-up latency display differ-
ing trends, showing the necessity of evaluating performance as a
complementary perspective. We envision studying their analytical
correlations as exciting future exploration.
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Eye-display distance. Eye-display distance often changes due to
ergonomics and display environments (e.g., VR/AR headsets), affect-
ing perceived size, and speed of observed content. Users’ catch-up
performance is affected not only by target speed changes, but also
its size; Visual stimulus size modulates users’ contrast sensitivity
to the stimulus [3], and by extension, modulates signal strength as
well. By jointly accounting for the change in contrast sensitivity,
and target speed given eye-display viewing conditions, we are able
to bootstrap our behavioral model.

As a proof-of-concept visualization, in Figure 8b we show how
the catch-up latency of adapting a d = 1 inch wide visual target with
a spatial frequency of 1 cycles-per-degree moving at v = 5 inch/s
across a 27 inch display changes as a function of both its luminance
contrast, and eye-display distance. We compute the underlying
signal strength (visualized as a colormap) for each contrast and
eye-display distance condition by applying Barten [3]’s contrast
sensitivity function on the described stimulus, which outputs signal
strength of the stimulus as a direct input for our model, and overlay
the resultant catch-up latency prediction according to our model.

6 Limitations and Future Work

Individual vs. unified visibility model. One of our core aims is
to establish is how target visibility and motion jointly influence
visual catch-up efficiency. Since establishing a fine-grained and
comprehensive visibility function for signal strength itself is not our
focus, we performed a calibration procedure for participants. We
envision that recent advancements in cross-population and unified
visibility models [11, 41] may shed light on a statistical model to
bypass individual calibrations.

Multi-target and anisotropic optical flows. In Section 5.2, we val-
idated the non-effect from camera motion-induced retinal optical
flow during first-person shooter gameplay. In the experiments, par-
ticipants were instructed to track a single moving target. However,
in real-world scenarios, multiple peripheral targets may appear and
move anisotropically, potentially influencing localization perfor-
mance [40]. Additionally, the size of the target may extend outside
of the fovea, which has been shown to impact the number of catch-
up saccades for the same target motion [29]. A promising future
research direction could be exploring the eye movement perfor-
mance in the visual optical flow space to establish a robust and
generalizable model for complex interactive applications.

Unpredictable target trajectories. Our experiments focused on sim-
ple, predictable target trajectories with constant velocity, yet real-
world motion is far more varied and often unpredictable. Prior work
highlights the influence of contextual cues on tracking predictabil-
ity [28] and shows that acceleration affects pursuit dynamics [12].
To better approximate naturalistic viewing, future studies should
incorporate more complex trajectories, including acceleration and
other nonuniform motions, where anticipation is limited. Addition-
ally, targets in applied settings frequently appear in the periphery,
where saccadic dynamics differ and may confound latency. Incorpo-
rating peripheral presentations will be important for testing model
robustness and revealing other latency patterns.
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Effect trends vs. numerical precision. Across diverse settings and
applications, our model demonstrates generalizability in predict-
ing trends in how context affects catch-up eye movement perfor-
mance. However, we emphasize that precise numerical accuracy
in-the-wild is beyond its current capability due to factors such as
spatio-temporal complexity, variable viewing conditions (e.g., omni-
directional), and eye-tracking precision. We envision that augment-
ing this approach with large-scale gaze behavioral datasets and
probabilistic modeling could enable more accurate predictions to
inform future rendering algorithms and display systems.

7 Conclusion

In this work, we measure and analyze how spatio-temporal visual
features influence human catch-up eye movement latency in dy-
namic visual target tracking. With validations in various applica-
tion scenarios, we demonstrate our model’s applicability in pre-
dicting and guiding interactive visual content designs, considering
observers’ task performance and viewing experience. We hope the
research could foster new research on collaborative ground on mod-
eling the relationship between visual perception and its influence
on behavioral performance for practical and interactive graphics.
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A Eye-Tracking Data Pre-processing

We implement an objective method for determining whether the eye position recordings are usable in further analysis. First, we segment the
eye position traces of each trial, relative to stimulus onset time, ¢, into an initial fixation phase (—0.2 < t < 0.1 s) [4, 17], a catch-up onset
phase (0.1 < ¢ < 0.6 s) [17], and a steady-state tracking phase (0.6 < t < 0.9 s), [17, 54].

Using the eye position recordings from each segment, we require that the median fixation position be within 2 dva of the central fixation
positions, and the spread of eye positions, measured in standard deviations of the gaze distribution, to be less than o < 1 dva. In the application
studies of Section 5, the fixation phase tolerances were doubled due to larger tracker errors observed due to the more complex visual stimuli
presented throughout the trials. During the steady-state tracking phase, the median offset of the eye position recording relative to the target
stimulus was required to be within 4 dva.

To ensure accurate temporal alignment, the study was configured to record the screen position of the stimulus at each frame, synchronized
with the eye tracker’s position data at the corresponding frame. Data points in which the eye tracker detected invalid gaze samples or blinks
were identified and discarded prior to analysis.

B Main Results

We present the detailed ANOVA test results presented in Section 3.2.

Table 1. Experiment significance. ANOVA results for the three experiments of Section 3 show significance of both target speed, v, and signal strength, s, as well
as a strong interaction effect between the variables.

Participant Experiment Factor F-Statistic p-value 1712, Participant Experiment Factor F-Statistic p-value ryf,
v 6.27 0.0025 0.0530 v 3.48 0.032  0.0299
LUM N 133.54 < 0.001 0.6414 LUM s 114.51 < 0.001 0.6032
uXs 13.80 < 0.001 0.2698 uXs 2.23 0.041  0.0560
v 10.94 < 0.0001 0.0886 4 11.71 < 0.0001 0.0932
Py NOISE s 168.47 < 0.0001 0.6920 | P4 NOISE s 69.99 < 0.0001 0.4794
uXs 3.14 0.0056 0.0774 uXSs 1.26 0.028 0.0322
v 10.94 < 0.0001 0.1364 v 2.39 0.09 0.0206
COLOR s 168.47 < 0.0001 0.6374 COLOR s 68.57 < 0.0001 0.4743
0Xs 3.14 0.0056  0.2412 uXs 5.54 < 0.0001 0.1274
v 1.52 0.025 0.0133 v 2.71 0.069  0.0245
LUM s 90.94 < 0.0001 0.5469 LUM s 16.15 < 0.0001 0.1832
uXs 2.37 0.003  0.0594 uXSs 1.59 0.15 0.0423
0 3.64 0.028 0.0316 v 8.63 < 0.001 0.0802
P, NOISE s 140.68 < 0.0001 0.6543 | Ps NOISE s 20.16 < 0.0001 0.2340
uXs 2.57 0.020  0.0647 uXSs 1.32 0.25 0.0386
4 4.33 0.014 0.0374 4 6.93 0.0012  0.0598
COLOR s 156.27 < 0.0001 0.6777 COLOR s 26.75 < 0.0001 0.2691
uXs 12.80 < 0.0001 0.2563 uXs 7.94 < 0.0001 0.1794
v 2.49 0.085 0.0224
LUM s 4385 < 0.001 0.3764
uXs 3.45 0.0028  0.0869
v 2.49 0.0053  0.0452
P3 NOISE s 4385 < 0.0001 0.2957
uXs 3.45 0.15 0.0402
v 5.76 0.0036  0.0493
COLOR s 121.87 < 0.0001 0.6222
uXs 4.83 < 0.001 0.1157

C Participant Fatigue

We present the heat maps of catch-up latency based on trial progress per condition type from Section 3.
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Fig. 9. Catch-up performance of main study participants. Each panel shows a heatmap of normalized experiment progress (x-axis) versus object speed and
signal strength (y-axis). The three subplots per participant correspond to LUM, NOISE, and COLOR conditions, using a shared color scale for mean saccade
latencies (s). Rows denote speed-strength combinations, columns show normalized trial progress (0-1), and lighter colors indicate longer latencies.
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Fig. 9. Catch-up latency time based on progress per condition type. Each panel shows a heatmap of normalized experiment progress (x-axis) versus object
speed and signal strength (y-axis). The three subplots per participant correspond to LUM, NOISE, and COLOR conditions, using a shared color scale for mean
saccade latencies (s). Rows denote speed-strength combinations, columns show normalized trial progress (0-1), and lighter colors indicate longer latencies.
The consistent latencies over time demonstrate low fatigue of subjects.
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